Women sandals Strappy sandals sandals EZEROSY sandals sandals GOLD Gladiator Leather Greek qcR4zwa8 Women sandals Strappy sandals sandals EZEROSY sandals sandals GOLD Gladiator Leather Greek qcR4zwa8 Women sandals Strappy sandals sandals EZEROSY sandals sandals GOLD Gladiator Leather Greek qcR4zwa8 Women sandals Strappy sandals sandals EZEROSY sandals sandals GOLD Gladiator Leather Greek qcR4zwa8 Women sandals Strappy sandals sandals EZEROSY sandals sandals GOLD Gladiator Leather Greek qcR4zwa8 Women sandals Strappy sandals sandals EZEROSY sandals sandals GOLD Gladiator Leather Greek qcR4zwa8 Women sandals Strappy sandals sandals EZEROSY sandals sandals GOLD Gladiator Leather Greek qcR4zwa8
EZEROSY are a unique and stunning gladiator sandals.







•Genuine Leather sandals
You are here: HomeArticles → Teaching ratios and proportions

Women sandals Strappy sandals sandals EZEROSY sandals sandals GOLD Gladiator Leather Greek qcR4zwa8

Often, students learn how to solve proportions by memorizing the steps, but then they also forget those in a flash after school is over. They may remember faintly something about cross multiplying, but that's as far as it goes. How can we educators help them learn and retain how to solve proportions?


Ratios and proportions are NOT some way-out math stuff

Truly they aren't. We use them constantly, whether we realize it or not. Do you ever talk about going 55 miles per hour? Or figure how long it takes to travel somewhere with such-and-such a speed? You have seen unit prices, such as $1.22 per pound, $4 per foot, or $2.50 per gallon. Have you ever figured how much something costs given the unit price or what is your monthly pay if given the hourly rate? You've used ratios (or rates) and proportions.


What are proportions?

The following two problems involve a proportion:

  • If 2 gallons of gasoline costs $5.40, how much would 5 gallons cost?
  • If a car travels a certain distance in 3 hours, what distance could it travel in 7 hours?

The general idea in these problems is that we have two quantities that both change at the same rate. For example, in the top problem we have (1) gasoline, measured in gallons, and (2) money, measured in dollars. We know both quantities (both the dollars & gallons) for one situation (2 gallons costs $5.40), we know ONE quantity for the other situation (either the dollars or the gallons), and are asked the missing quantity (in this case, the cost for 5 gallons).

EZEROSY Gladiator Greek GOLD Leather Women sandals Strappy sandals sandals sandals sandals You can make a table to organize the information. Below, the long line —— means "corresponds to", not subtraction.

Example 1:

2 gallons —— 5.40 dollars
5 gallons —— x dollars

Example 2:

110 miles —— 3 hours
 x  miles —— 4 hours

In both examples, there are two quantities that both change at the same rate. Both situations involve four numbers, of which three are given and one is unknown. How can we solve these types of problems?


sandals GOLD sandals EZEROSY Leather sandals Gladiator Greek Women Strappy sandals sandals

The many ways to solve a proportion

There are actually several ways to figure out the answer to a proportion — all involve proportional thinking.

  1. If two gallons costs $5.40 and I'm asked how much do 5 gallons cost, since the amount of gallons increased 2.5-fold, I can simply multiply the dollars by 2.5, too.
     
  2. If two gallons costs $5.40, I first figure how much 1 gallon costs, and then multiply that by five to get the cost of 5 gallons. Now, 1 gallon would cost $5.40 ÷ 2 = $2.70, and then $2.70 × 5 = $13.50.
     
  3. I can write a proportion and solve it by cross multiplying:

    5.40

    2 gallons
    x

    5 gallons

    After coss-multiplying, I get:

    5.40 · 5 = 2x

    x =   5.40 · 5

    2
      = $13.50

     
  4. I write a proportion like above but instead of cross-multiplying, I simply multiply both sides of the equation by 5.
     
  5. I write a proportion this way: (and it still works, because you can write the two ratios for the proportion in several different ways)

    5.40

    x
    = 2 gallons

    5 gallons

     

My point is that to solve problems like above, you don't need to remember how to write a proportion or how to solve it — you can ALWAYS solve them just by using common sense and a calculator.

And this is something students should realize, too. Make them understand the basic idea so well that they can figure proportion problems out without using an equation, if need be. However, I feel you should also teach cross-multiplying as it is a very necessary "trick of the trade" or shortcut when solving equations.

One basic idea that always works for solving proportions is to first find the unit rate, and then multiply that to get what is asked. For example: if a car travels 110 miles in 3 hours, how far will it travel in four hours? First figure out the unit rate (how far the car goes in 1 hour), then multiply that by 4.


How to teach proportions

To introduce proportions to students, give them tables of equivalent rates to fill in, such as the one below. This will help them learn proportional reasoning.

Miles 45                     Strappy sandals sandals sandals EZEROSY Greek GOLD Women sandals Gladiator sandals Leather  
Hours 1 2 3 4 5              

in Heels White Mesh Vamp by Size Heels Dickerson 1950s Style Low 1960's of 1940s Early the 10AAAA Late t1Y4xw
Leather Gladiator sandals Women Greek sandals sandals Strappy GOLD sandals sandals EZEROSY Dollars 3.30     sandals sandals sandals sandals Strappy GOLD Women Leather Gladiator Greek sandals EZEROSY                  
Pounds 1 2 3 4 5 Greek sandals sandals GOLD sandals sandals Leather sandals EZEROSY Women Gladiator Strappy     Gladiator sandals EZEROSY sandals Leather sandals sandals sandals Strappy Greek GOLD Women          

Work with these tables (first using easy numbers) until the students get used to them. You can tie in some of them with real-life situations. For example, you can take a situation from a proportion word problem in your math curriculum and make an equivalent rate table from it.

As you advance, give students tables of equivalent rates to fill in where the "givens" are in the middle:

Dollars         45           sandals EZEROSY sandals sandals sandals sandals Greek Strappy GOLD Women Leather Gladiator    
Hours 1 2 3 4 5              

Dollars         42              
Hours 1 sandals sandals Greek Leather GOLD sandals Strappy Women sandals EZEROSY Gladiator sandals 2 3 4 5              

Dollars sandals sandals Leather sandals GOLD Women sandals EZEROSY Gladiator Strappy sandals Greek         15.50              
Meters 0.10 0.20 0.30 0.40 0.50              

Of course the students should notice that it is easy to fill in the table if you first figure out the unit rate then find the other amounts.


The next step: proportion problems and thinking

After studying tables of equivalent rates, the students are ready to tackle word problems. Choose simple ones at first, and let them think! They might very well come up with an answer on their own by making a table or by figuring out the unit rate. So... you don't actually need to write an actual proportion to solve a proportion word problem.

However, I don't want to put down equations or cross-multiplying; students studying algebra and pre-algebra courses still need to learn to solve proportions with cross-multiplying. It's just that learning to use common sense is even more important.


Leather sandals GOLD Women Gladiator sandals sandals sandals Greek Strappy EZEROSY sandals

Definitions

Did you notice I didn't give definitions of the terms ratio and proportion? Well, I didn't want to confuse. Sometimes you don't have to learn the exact definitions up front, but you can start by learning to solve word problems — even real-life problems.

A RATIO is two "things" (numbers or quantities) compared to each other. For example, "3 dollars per gallon" is a ratio, and "40 miles per 1 hour" is another. Here are some more: 15 girls versus 14 boys, 569 words in 2 minutes, 23 green balls to 41 blue balls. Your math book might say it is a comparison of two numbers or quantities.

A related term, RATE, is defined as a ratio where the two quantities have different units. Some people differentiate and say that the two quantities in a ratio have to have a same unit; some people don't differentiate and allow "3 dollars per gallon" to be called a ratio as well.

PROPORTION is an equation where two ratios are equal. For example, "3 dollars per gallon" equals "6 dollars per two gallons". Or, 2 teachers per 20 students equals 3 teachers per 30 students. Or,

3 liters

48 square meters
= 10 liters

160 square meters

Of course, for it to be a problem, you need to make one of those four numbers to be an unknown (not given).


See also

Free proportion worksheets
Free worksheets for simple proportion word problems.



Math Lessons menu
Italy 6 5 Real Hippie Boot Bohemian Made 7 in Tecnica size Mukluk Fits Boho Italian Fur Vintage 41 Boots PWH6EvUqnY
Rhinestone Shoes Coral Bridal Flops Wedding Shoes Bridesmaids Flip Flip Flops Bridal Sandals Wedding Flip Color Flops Wedding PgqH1I1